Constructor
new SL2()
- Source:
Overload the constructor to return the identity.
Classes
Methods
flip() → {SL2}
- Source:
Apply the "flip"
Returns:
- the current element
- Type
- SL2
invert() → {SL2}
- Source:
Set the current element to the inverse of the given element.
Returns:
- the current element
- Type
- SL2
multiply(elt) → {SL2}
- Source:
Multiply the element on the left by isom, i.e. this * elt
Parameters:
Name | Type | Description |
---|---|---|
elt |
SL2 | the left element in the product |
Returns:
- the current element
- Type
- SL2
premultiply(elt) → {SL2}
- Source:
Multiply the element on the right by isom, i.e. elt * this
Parameters:
Name | Type | Description |
---|---|---|
elt |
SL2 | the right element in the product |
Returns:
- the current element
- Type
- SL2
reduceError() → {SL2}
- Source:
Correct the error to make sure that the point lies on the "hyperboloid"
Returns:
- the current element
- Type
- SL2
rotateBy(angle) → {SL2}
- Source:
Apply the "rotation" of angle alpha centered at the origin
Parameters:
Name | Type | Description |
---|---|---|
angle |
number | the angle of the rotation |
Returns:
- the current element
- Type
- SL2
toH2() → {Vector3}
- Source:
Projection onto H^2
Returns:
- the image of the origin in H^2 by the given element of SL(2,R)
- Type
- Vector3
toMatrix3() → {Matrix3}
- Source:
Projection from SL(2,R) to SO(2,1)
Returns:
- the image of the current element in SO(2,1)
- Type
- Matrix3
toMatrix4() → {Matrix4}
- Source:
Return the 4x4 Matrix, corresponding to the current element, seen as an isometry of SL(2,R)
Returns:
- the current element of SL(2,R) as an isometry of SL(2,R)
- Type
- Matrix4
translateFiberBy(phi) → {SL2}
- Source:
Translate the element by an angle phi
along the fiber
Parameters:
Name | Type | Description |
---|---|---|
phi |
number | the angle of translation |
Returns:
- the current element
- Type
- SL2