SL2

SL2

The elements of SL(2,R) seen as vectors in the basis E = (E0,E1,E2,E3) The elements satisfy the relation - x^2 - y^2 + z^2 + w^2 = -1

Constructor

new SL2()

Source:

Overload the constructor to return the identity.

Classes

SL2

Methods

flip() → {SL2}

Source:

Apply the "flip"

Returns:
  • the current element
Type
SL2

invert() → {SL2}

Source:

Set the current element to the inverse of the given element.

Returns:
  • the current element
Type
SL2

multiply(elt) → {SL2}

Source:

Multiply the element on the left by isom, i.e. this * elt

Parameters:
Name Type Description
elt SL2

the left element in the product

Returns:
  • the current element
Type
SL2

premultiply(elt) → {SL2}

Source:

Multiply the element on the right by isom, i.e. elt * this

Parameters:
Name Type Description
elt SL2

the right element in the product

Returns:
  • the current element
Type
SL2

reduceError() → {SL2}

Source:

Correct the error to make sure that the point lies on the "hyperboloid"

Returns:
  • the current element
Type
SL2

rotateBy(angle) → {SL2}

Source:

Apply the "rotation" of angle alpha centered at the origin

Parameters:
Name Type Description
angle number

the angle of the rotation

Returns:
  • the current element
Type
SL2

toH2() → {Vector3}

Source:

Projection onto H^2

Returns:
  • the image of the origin in H^2 by the given element of SL(2,R)
Type
Vector3

toMatrix3() → {Matrix3}

Source:

Projection from SL(2,R) to SO(2,1)

Returns:
  • the image of the current element in SO(2,1)
Type
Matrix3

toMatrix4() → {Matrix4}

Source:

Return the 4x4 Matrix, corresponding to the current element, seen as an isometry of SL(2,R)

Returns:
  • the current element of SL(2,R) as an isometry of SL(2,R)
Type
Matrix4

translateFiberBy(phi) → {SL2}

Source:

Translate the element by an angle phi along the fiber

Parameters:
Name Type Description
phi number

the angle of translation

Returns:
  • the current element
Type
SL2